

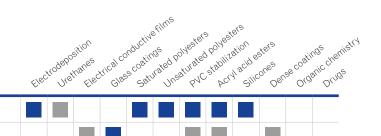
SONGWON makes use of its expertise in alkyl tin oxides to refine processes for producing organotin compounds based on butyl and octyl oxide (DBTO and DOTO). Applications include electrodeposition coatings, tin

catalysts and stabilizers for PVC.

Butyl and octyl oxides are the main catalysts used in electrodeposition coating technology, which is applied extensively in the global automotive industry.

Tin catalysts based on butyl and octyl oxides support various chemical reactions such as esterification.

Tin stabilizers prevent degradation of PVC resins, which require particularly high heat resistance.


Customers can select from a wide range of SONGWON's tin intermediates, depending on applications and requirements.

Product range selection guide

SONGCAT™ DBTO

 $\mathsf{SONGCAT}^\mathsf{TM}\,\mathsf{MBTC}$

Butyltin Compounds

Octyltin
Compounds

SONGCAT™ DOTO						
SONGCAT™ DOTC						
SONGCAT™TOT						

Methyltin Compounds

SONGCAT™ DMTC						
SONGCAT™ MTW-50						
SONGCAT™ MTM-70						

Tin Intermediates

		Molecular Weight	Sn Content (%)	Specific Gravity	Bulk Density at 20°C	Applications
SONGCATTM DBTO Di-n-butyltin oxide CAS NO. 818-08-6 PW, DF	$(C_4H_9)_2$ – Sn = O	248.9	47.5±0.5	-	approx. 0.6 g/ml (PW) approx. 0.8 g/ml (DF)	Intermediate for outstanding heat-resistant and weatherable butyltin PVC stabilizers Catalyst for electrodeposition paints Catalyst for esterification and trans-esterification reaction Raw material for polyurethane catalysts
SONGCAT TM MBTC Mono-n-butyltin trichloride CAS NO. 1118-46-3 LQ	$C_4H_9-Sn-Cl_3$	282.2	> 41.0	1.70 ~ 1.75 g/ml (at 25°C)	_	Intermediate for butyltin PVC stabilizers Protection against damage caused by extraneous contact on glass surfaces Humidity reduces stability
SONGCAT TM DOTO Di-n-octyltin oxide CAS NO. 870-08-6 PW, DF	$(C_8 H_{17})_2 - Sn = O$	361.1	32.7±0.5	_	approx. 0.6 g/ml (PW) approx. 0.6 g/ml (DF) approx. 0.2 g/ml (FPW)	Intermediate for non-toxic FDA- approved octyltin PVC stabilizers Catalyst for electrodeposition paints Raw material for polyurethane catalysts
SONGCAT™ DOTC Di-octyltin dichloride CAS NO. 3542-36-7 SL	(C ₈ H ₁₇) ₂ -Sn-Cl ₂	416.1	28.0±1.0	1.15~1.18 g/ml (at 50°C)	-	Intermediate for non-toxic FDA- approved octyltin PVC stabilizers Raw material for manufacturing organotin compounds
SONGCATTM TOT Tetra-octyltin CAS NO. 3590-84-9 LQ	(C ₈ H ₁₇) ₄ -Sn	571.6	> 20.0	0.92 ~ 0.99 g/ml (at 20°C)	-	Intermediate for non-toxic FDA- approved octyltin PVC stabilizers Raw material for manufacturing organotin compounds
SONGCAT™ DMTC Dimethyltin dichloride CAS NO. 753-73-1 SL	(CH ₃) ₂ -Sn-Cl ₂	219.7	> 53.0	-	-	Intermediate for methyltin PVC stabilizers Raw material for polyurethane catalysts Coating material for glass and protection against damage on glass surfaces Sourcing material for developing electrically conductive thin film
SONGCAT TM MTW-50 Dimethyltin dichloride and water mixture LQ	(CH ₃) ₂ -Sn-Cl ₂ H ₂ O	_	25.0~28.0	1.39 ~ 1.43 g/ml (at 25°C)	_	Used for manufacturing of organotin compounds Intermediate for methyltin PVC stabilizers Coating material for glass and protection against damage on glass surfaces Sourcing material for developing electrically conductive thin film
SONGCATTM MTM-70 Dimethyltin dichloride and MeOH mixture LQ	(CH ₃) ₂ -Sn-Cl ₂ CH ₃ OH	-	36.0~38.0	1.40~1.48 g/ml (at 25°C)	_	Suitable for manufacturing organotin compounds Suitable for polyurethane form baking for carpet

Tin Catalysts

	Dosage (PHR)	Characteristics	Applications
SONGSTAB™TL-100 Dibutyltin dilaurate LQ	(100 ~ 2000 ppm for Catalyst) 0.5 ~ 1.5	 Pure dibutyltin dilaurate Slow cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers Excellent initial lubricity and weatherability Initial colorless products are obtainable when used in combination with other organotin, liquid organic stabilizers 	Catalyst for polyurethanes and silicone RTV Rigid, flexible PVC calenderings and extrudings
SONGSTAB™TL-190 Dibutyltin dilaurate LQ	(100 ~ 2000 ppm for Catalyst) 0.5 ~ 1.5	Dibutyltin dilaurate Slow cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers Much lower freezing temperature than TL-100 Excellent initial lubricity and weatherability Initial colorless products are obtainable when used in combination with other organotin, liquid organic stabilizers	Catalyst for polyurethanes and silicone RTV Rigid, flexible PVC calenderings and extrudings
SONGSTAB™ BT-300 Mono butyltin tris (2-ethylhexanoate) LQ	100 ~ 2,000 ppm	Catalyst has a moderate activity that allows a longer pot life for silicone emulsions and adhesives that cure at room temperature	Catalyst for polyesters and silicone RTV
SONGSTAB™TL-710 Dioctyltin dilaurate LQ	100 ~ 2000 ppm	Slow cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers Less moisture sensitivity and higher activation temperature than conventional dibutyltin dilaurate	Catalyst for polyurethanes and silicone RTV
SONGSTAB™TL-720 Dioctyltin dilaurate LQ	100 ~ 2000 ppm	Slow cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers Less moisture sensitivity and higher activation temperature than conventional dibutyltin dilaurate Much lower freezing temperature than TL-710	Catalyst for polyurethanes and silicone RTV
SONGSTAB™ T-320 Dioctyltin di-neodecanoate LQ	100 ~ 2000 ppm	Slow cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers Less moisture sensitivity and higher activation temperature than conventional dibutyltin dilaurate	Catalyst for polyurethanes and silicone RTV
SONGSTAB™ MT-710 Dimethyltin di-neodecanoate LQ	100 ~ 2000 ppm	Moderate to rapid cure catalyst for RTV (room temperature vulcanizing) silicone systems and PU foams and elastomers When evaluating MT-710 in comparison to dibutyltin dilaurate (TL-100), an initial amount of one third is recommended	Catalyst for polyurethanes and silicone RTV

Standard Packaging

• **DBTO, DOTO, Solids:** 20 kg Paper Bag

• MBTC, Liquids: 45 kg PE Drum

50 kg Steel Drum

• DOTC, MTW-50, MTM-70, Liquids: 220 kg Steel Drum

• TOT, Liquids: 200 kg Steel Drum

Key to Abbreviations of Physical Forms

• **DW**: Dispersion

• PW: Powder

• **SB:** Semi Bead • **MB:** Micro Beads

• **SL:** Solid • **FC:** Fusion Crystal

• **FF:** Free Flow • **LQ:** Liquid or Molten

• **BD:** Beads

• **DF:** Dust Free Flow

• **CP:** Crystalline Powder

• PS: Pastilles

• GR: Granule

• FG: Fine Grind

• VL: Viscous Liquid

About SONGWON Industrial Group

SONGWON, which was founded in 1965 and is headquartered in Ulsan, South Korea, is a leader in the development, production and supply of specialty chemicals.

The second largest manufacturer of polymer stabilizers worldwide, SONGWON operates group companies all over the world, offering the combined benefits of a global framework and readily accessible local organizations.

For further information, please go to:

www.songwon.com

tpp@songwon.com

SONGWON provides customers with warranties and representations as to the chemical or technical specifications, compositions and/or the suitability for use for any particular purpose exclusively in individual written agreements.

The facts and figures contained herein have been carefully compiled to the best of SONGWON's knowledge but are essentially intended for informational purposes only.

SONGWON Industrial Group does not accept any liability whatsoever for any information, reference or advice provided in this document or any similar SONGWON publication.

Version 2, March 2017

